Appendix week 9

Why look at Diophantine Equations?

Example 1 Alison spends $£ 6.20$ on sweets for prizes in a contest. If a large box of sweets costs 50p and a small box 20p, how many boxes of each size did she buy?

With her $£ 6.20$, Alison could have gone into another shop where the large box of sweets cost 49 p and the small box 21 p. What is the maximum she could have spent on sweets and how many boxes of each size would she have got for her money?

Solution Left to student - but you can see why we require the answers to be integers.

The general solution of $a m+b n=c$.

Theorem 2 If $a m+b n=c$ is soluble and $\left(m_{0}, n_{0}\right)$ is a solution, then all solutions are given by

$$
\left(m_{0}-\frac{b}{\operatorname{gcd}(a, b)} t, n_{0}+\frac{a}{\operatorname{gcd}(a, b)} t\right)
$$

with $t \in \mathbb{Z}$.
Proof Write $d=\operatorname{gcd}(a, b)$, so $d \mid a$ and $d \mid b$. Thus there exist $u, v \in \mathbb{Z}$ such that $a=u d$ and $b=v d$. Then by Corollary in the notes,

$$
\operatorname{gcd}(u, v)=\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1 .
$$

Let $(m, n) \in \mathbb{Z}^{2}$ be any solution of $a x+b y=c$. Then we have both of

$$
\begin{aligned}
a m_{0}+b n_{0} & =c, \\
a m+b n & =c .
\end{aligned}
$$

Subtract to get

$$
a\left(m_{0}-m\right)=b\left(n-n_{0}\right) .
$$

Divide through by d to get

$$
\begin{equation*}
u\left(m_{0}-m\right)=v\left(n-n_{0}\right) . \tag{1}
\end{equation*}
$$

Since the left hand side is a multiple of u we have $u \mid v\left(n-n_{0}\right)$. But $\operatorname{gcd}(u, v)=$ 1 so, by Corollary in notes, $u \mid\left(n-n_{0}\right)$. That is, $n-n_{0}=u t$, for some $t \in \mathbb{Z}$.

Substitute back into (1) to get $u\left(m_{0}-m\right)=v(u t)$, i.e. $m_{0}-m=v t$. Then all solutions must be of the form

$$
\begin{aligned}
(m, n) & =\left(m_{0}-v t, n_{0}+u t\right)=\left(m_{0}-\frac{b}{d} t, n_{0}+\frac{a}{d} t\right) \\
& =\left(m_{0}-\frac{b}{\operatorname{gcd}(a, b)} t, n_{0}+\frac{a}{\operatorname{gcd}(a, b)} t\right),
\end{aligned}
$$

for $t \in \mathbb{Z}$.
We must, in fact, show that these are solutions of the equation. But, for any $t \in \mathbb{Z}$,

$$
\begin{aligned}
& a\left(m_{0}-\frac{b}{\operatorname{gcd}(a, b)} t\right)+b\left(n_{0}+\frac{a}{\operatorname{gcd}(a, b)} t\right) \\
= & \left(a m_{0}+b n_{0}\right)+\left(-\frac{a b}{\operatorname{gcd}(a, b)} t+\frac{b a}{\operatorname{gcd}(a, b)} t\right) \\
= & a m_{0}+b n_{0}=c,
\end{aligned}
$$

as required.

An alternative way to solve some linear congruences.

Example 3 Solve $5 x \equiv 6 \bmod 19$.
Solution TRICK We can change any coefficients by adding multiples of 19 , as in

$$
5 x \equiv 6 \equiv 6+19 \equiv 25 \bmod 19
$$

Recall by part ii) of a theorem above, if $a b_{1} \equiv a b_{2} \bmod m$ and $\operatorname{gcd}(a, m)=1$ then we can divide by a to get $b_{1} \equiv b_{2} \bmod m$.

In the present example this means we can divide by 5 to get $x \equiv 5 \bmod 19$.

Advice, Only look for alternative ways to solve congruences if it doesn't take you too long to do. But, if in doubt, use Euclid's Algorithm to solve $a x \equiv b \bmod m$.

An example of the use of congruences

Theorem 4 The integer $a_{r} a_{r-1} \ldots a_{2} a_{1} a_{0}(r \geq 1)$ in decimal notation is divisible by 11 if, and only if,

$$
a_{r}(-1)^{r}+a_{r-1}(-1)^{r-1}+\ldots+a_{2}-a_{1}+a_{0},
$$

i.e. the sum of digits with alternating sign, is divisible by 11.

For example, 2592579 is divisible by 11 since $2-5+9-2+5-7+9=11$, which is divisible by 11. For an even larger example 91829182917392817193 has an alternating sum of 66 . If you can't remember your 11 times table you can repeat the method on 66 which has an alternating sum of 0 , divisible by 11 .

Proof First note that if

$$
a \equiv b \bmod 11 \quad \text { and } \quad 11 \mid b \quad \text { then } 11 \mid a .
$$

So it suffices to prove that

$$
a_{r} a_{r-1} \ldots a_{2} a_{1} a_{0} \equiv a_{r}(-1)^{r}+a_{r-1}(-1)^{r-1}+\ldots+a_{2}-a_{1}+a_{0} \bmod 11,
$$

for if 11 divides the alternating sum on the right it must divide $a_{r} a_{r-1} \ldots a_{2} a_{1} a_{0}$ as required.

Next note that

$$
10 \equiv-1 \bmod 11 \quad \text { and so } 10^{n} \equiv(-1)^{n} \bmod 11
$$

for all $n \geq 1$. Thus

$$
\begin{aligned}
a_{r} a_{r-1} \ldots a_{2} a_{1} a_{0} \equiv & a_{r} 10^{r}+a_{r-1} 10^{r-1}+\ldots+a_{2} 10^{2}+a_{1} 10+a_{0} \\
\equiv & a_{r}(-1)^{r}+a_{r-1}(-1)^{r-1}+\ldots \\
& \ldots+a_{2}(-1)^{2}+a_{1}(-1)+a_{0} \bmod 11 \\
& \equiv a_{r}(-1)^{r}+a_{r-1}(-1)^{r-1}+\ldots+a_{2}-a_{1}+a_{0} \bmod 11,
\end{aligned}
$$

as required.

Example Is $2^{40}-1$ divisible by 11 ?
Solution From a calculator $2^{40}-1=1099511627775$. Here $r=12$ and so we consider

$$
1-0+9-9+5-1+1-6+2-7+7-7+5=0 .
$$

This is divisible by 11 as, is thus, $2^{40}-1$.
Question for students. Find other factors of $2^{40}-1$.
Example Is $2^{35}+1$ divisible by 11 ?
Solution From a calculator $2^{35}+1=34359738369$. Hence $r=10$ and so we consider

$$
3-4+3-5+9-7+3-8+3-6+9=0 .
$$

This is divisible by 11 as is thus $2^{35}+1$.
Question for students. Use the method of successive squaring to find $2^{35} \bmod 11$ and thus give an alternative proof of $2^{35}+1 \equiv 0 \bmod 11$.

The number of solutions of a congruence.

Theorem 5 The congruence $a x \equiv c(\bmod m)$ is soluble in integers if, and only if, $\operatorname{gcd}(a, m) \mid c$. The number of incongruent solutions modulo m is $\operatorname{gcd}(a, m)$.

Proof The ideas for this proof can be found around p.244. But simply,

$$
\begin{aligned}
& \exists x \in \mathbb{Z}: a x \equiv c(\bmod m) \\
\Leftrightarrow & \exists x, w \in \mathbb{Z}: a x=c+w m \\
\Leftrightarrow & \exists x, y \in \mathbb{Z}: a x+m y=c,
\end{aligned}
$$

having written y for $-w$. We have seen that such integer solutions exist if, and only if, $\operatorname{gcd}(a, m) \mid c$. And we have also seen that if $\left(x_{0}, y_{0}\right)$ is a solution of $a x+m y=c$ then all solutions are given by

$$
\left(x_{0}+\frac{m}{d} t, y_{0}-\frac{a}{d} t\right),
$$

for $t \in \mathbb{Z}$, and where $d=\operatorname{gcd}(a, m)$. Two solutions to our original congruence, $x_{0}+(m / d) t_{1}$ and $x_{0}+(m / d) t_{2}$, are the same, i.e. congruent modulo m, if and only if

$$
\frac{m}{d} t_{1} \equiv \frac{m}{d} t_{2} \bmod m .
$$

Writing $m=(m / d) \times d$ we get

$$
\frac{m}{d} t_{1} \equiv \frac{m}{d} t_{2} \bmod \left(\frac{m}{d} d\right) .
$$

Apply Theorem (i) above and divide through by m / d to obtain $t_{1} \equiv t_{2} \bmod d$, i.e. $t_{1} \equiv t_{2} \bmod \operatorname{gcd}(a, m)$.

Thus incongruent solutions are obtained by choosing $t_{1} \not \equiv t_{2} \bmod \operatorname{gcd}(a, m)$. Hence all incongruent solutions are obtained on choosing

$$
t=0,1,2, \ldots, \operatorname{gcd}(a, m)-1 .
$$

More examples of Pairs of congruences

Example 6 Solve

$$
2 x \equiv 3 \bmod 5 \quad \text { and } \quad 3 x \equiv 4 \bmod 7
$$

Solution. First, solve each individual congruence. The easiest way is to find the inverse of the coefficients of x.

Note that $3 \times 2 \equiv 1 \bmod 5$ so, on multiplying both sides by 3 , the first congruence becomes $x \equiv 3 \times 3 \equiv 4 \bmod 5$.

Next, $5 \times 3 \equiv 1 \bmod 7$ so, on multiplying both sides by 3 , the second congruence becomes $x \equiv 5 \times 4 \equiv 6 \bmod 7$.

Hence we have the system

$$
x \equiv 4 \bmod 5 \quad \text { and } \quad x \equiv 6 \bmod 7 .
$$

Second, solve the pair of congruences. To combine these congruences we observe that

$$
\begin{aligned}
x & \equiv 4 \bmod 5 \Rightarrow x=4+5 m \text { for some } m \in \mathbb{Z}, \\
x & \equiv 6 \bmod 7 \Rightarrow x=6+7 n \text { for some } n \in \mathbb{Z} .
\end{aligned}
$$

Combine as in

$$
4+5 m=x=6+7 n
$$

which rearranges to

$$
5 m-7 n=2 .
$$

All the numbers are small here so simply stare at this to see that $\left(m_{0}, n_{0}\right)=$ $(6,4)$ is a solution. The general solution follows from

$$
5\left(m_{0}+7 t\right)-7\left(n_{0}+5 t\right)=1
$$

for all $t \in \mathbb{Z}$. Thus the general solution for m is $6+7 t$ which can be substituted into $x=4+5 m$ to get

$$
x=4+5(6+7 t)=34+35 t
$$

for all $t \in \mathbb{Z}$. So the solution to our simultaneous pair is $x \equiv 34 \bmod 35$.

Example 7 Solve

$$
x \equiv 34 \bmod 35 \quad \text { and } \quad 5 x \equiv 7 \bmod 11 .
$$

Solution Note that $9 \times 5 \equiv 1 \bmod 11$ so the second congruence becomes, on multiplying both sides by 9 ,

$$
9 \times 5 x \equiv 9 \times 7 \bmod 11, \quad \text { i.e. } \quad x \equiv 8 \bmod 11 .
$$

Thus we have the system

$$
x \equiv 34 \bmod 35 \quad \text { and } \quad x \equiv 8 \bmod 11
$$

Then

$$
\begin{aligned}
x & \equiv 34 \bmod 35 \Rightarrow x=34+35 m \\
x & \equiv 8 \bmod 11 \Rightarrow x=8+11 n
\end{aligned}
$$

for some $m, n \in \mathbb{Z}$. Equate to get $34+35 m=x=8+11 n$, that is

$$
\begin{equation*}
26=11 n-35 m . \tag{2}
\end{equation*}
$$

To solve this apply Euclid's Algorithm to 35 and 11 :

$$
\begin{aligned}
& 35=3 \times 11+2 \\
& 11=5 \times 2+1
\end{aligned}
$$

Reverse the steps to get

$$
\begin{aligned}
1 & =11-5 \times 2 \\
& =11-5 \times(35-3 \times 11) \\
& =16 \times 11-5 \times 35
\end{aligned}
$$

Multiply by 26 to get

$$
26=11 \times 416-35 \times 130 .
$$

So a solution to (2) is $\left(n_{0}, m_{0}\right)=(416,130)$. The general solution follows from

$$
\begin{aligned}
26 & =11\left(n_{0}+35 t\right)-35\left(m_{0}+11 t\right) \\
& =11(416+35 t)-35(130+11 t)
\end{aligned}
$$

for $t \in \mathbb{Z}$. The general solution for n, of $416+35 t$ can be substituted into

$$
x=8+11 n=8+11(416+35 t)=4584+385 t .
$$

Thus the solution to our simultaneous pair is $x \equiv 4584 \equiv 349 \bmod 385$

Another example of a Triplet of Congruences

Example 8 Solve the system

$$
2 x \equiv 3 \bmod 5, \quad 3 x \equiv 4 \bmod 7 \quad \text { and } \quad 5 x \equiv 7 \bmod 11
$$

Solution With 3 or more congruence first solve each congruence separately. Then, take a pair, solve them to replace by a single congruence. Then take this new congruence with an unconsidered one from the original system and solve this pair. Continue.

So, in this example, start by solving

$$
2 x \equiv 3 \bmod 5 \quad \text { and } \quad 3 x \equiv 4 \bmod 7 .
$$

But this was seen in the first example above, solution $x \equiv 34 \bmod 35$. Combine this new congruence with the remaining congruence from the original system, i.e.

$$
x \equiv 34 \bmod 35 \quad \text { and } \quad 5 x \equiv 7 \bmod 11 .
$$

But this was seen in the second example above, solution

$$
x \equiv 349 \bmod 385 .
$$

Check this answer by substituting back in.

Chinese Remainder Theorem

We have applied a method above to solve a system of congruences with no assurance (i.e. no proof) that the method will always give a solution. That is, we do not know what conditions on a system of congruences will ensure a solution. In the next two theorems we will give conditions under which a system of congruences has a solution.

Theorem 9 Chinese Remainder Theorem (for two linear congruences)
Let m_{1} and m_{2} be coprime integers, and a_{1}, a_{2} integers. Then the simultaneous congruences

$$
x \equiv a_{1} \bmod m_{1} \quad \text { and } \quad x \equiv a_{2} \bmod m_{2}
$$

have exactly one solution with $0 \leq x_{0} \leq m_{1} m_{2}-1$ and the general solution is $x \equiv x_{0} \bmod m_{1} m_{2}$.

Proof (Not in PJE) Since $\left(m_{1}, m_{2}\right)=1$ we can find integers b_{1}, b_{2} satisfying the congruences

$$
m_{2} b_{1} \equiv 1 \bmod m_{1} \quad \text { and } \quad m_{1} b_{2} \equiv 1 \bmod m_{2}
$$

Set

$$
x^{*}=m_{2} b_{1} a_{1}+m_{1} b_{2} a_{2} .
$$

Then modulo m_{1} the second term in x^{*} vanishes and we have

$$
x^{*} \equiv\left(m_{2} b_{1}\right) a_{1} \equiv a_{1} \bmod m_{1}
$$

Modulo m_{2} the first term in x^{*} vanishes and we have

$$
x^{*} \equiv\left(m_{1} b_{2}\right) a_{2} \equiv a_{2} \bmod m_{2}
$$

Thus x^{*} is a simultaneous solution
Of course, this x^{*} may not lie between 0 and $m_{1} m_{2}-1$. But if y^{*} is another solution to the system of congruences then $x^{*} \equiv y^{*} \bmod m_{1}$ and $x^{*} \equiv y^{*} \bmod m_{2}$. So both m_{1} and m_{2} divide $x^{*}-y^{*}$. Since $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$ we must have $m_{1} m_{2}$ divides $x^{*}-y^{*}$, and thus $y^{*}=x^{*}+t m_{1} m_{2}$ for $t \in \mathbb{Z}$. It is possible to choose one, and only one, $t_{0} \in \mathbb{Z}$ with $0 \leq x^{*}+t_{0} m_{1} m_{2} \leq$ $m_{1} m_{2}-1$. So only one simultaneous solution lies between 0 and $m_{1} m_{2}-1$.

Note that to apply the Chinese Remainder Theorem we have to ensure that the congruences are of the form $x \equiv a \bmod m$, i.e. where the coefficient of x is 1 .

Example 10 Using the Chinese Remainder Theorem solve

$$
x \equiv 16 \bmod 17 \quad \text { and } \quad x \equiv 3 \bmod 13
$$

Solution Need to find b_{1} and b_{2}, solutions of

$$
13 b_{1} \equiv 1 \bmod 17 \quad \text { and } \quad 17 b_{2} \equiv 1 \bmod 13
$$

The first congruence can be written as $-4 b_{1} \equiv 1 \bmod 17$ for which we note that $-4 \times 4=-16 \equiv 1 \bmod 17$ so $b_{1}=4$.

For the second congruence, written as $4 b_{2} \equiv 1 \bmod 13$, note that $4 \times$ $(-3)=-12 \equiv 1 \bmod 13$. So we take $b_{2}=-3 \equiv 10 \bmod 13$.

Finally evaluate x^{*} as

$$
\begin{aligned}
x^{*} & =m_{2} b_{1} a_{1}+m_{1} b_{2} a_{2} \\
& =13 \times 4 \times 16+17 \times 10 \times 3=1342 \\
& \equiv 16 \bmod 221 .
\end{aligned}
$$

The virtue of the Chinese Remainder Theorem is that it can be generalized to systems of any number of linear congruences. The condition under which the system of congruences $x \equiv a_{i} \bmod m_{i}$ will have a solution if their moduli m_{i} satisfy gcd $\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$. We say that the modulus are pairwise coprime.

How is pairwise coprime used in the following proof? Note that if $a \mid c$ and $b \mid c$ then $a b$ does not necessarily divide c. For example 6|12 and 4|12 but $24 \nmid 12$. Yet coprimeness gives

Lemma 11 If $\operatorname{gcd}(a, b)=1, a \mid c$ and $b \mid c$ then $a b \mid c$.
Proof $a \mid c$ and $b \mid c$ imply $c=a k$ and $c=b \ell$ for some $k, \ell \in \mathbb{Z}$. Equate to get $a k=b \ell$. Since a divides the left hand side it divides the right hand side, i.e. $a \mid b \ell$. Yet $\operatorname{gcd}(a, b)=1$ so, by an earlier result, $a \mid \ell$. Thus $a b \mid b \ell$, i.e. $a b \mid c$ as required.

To combine a number of coprimality conditions the following is useful.
Lemma 12 If $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(b, m)=1$ then $\operatorname{gcd}(a b, m)=1$.
Proof Recall $\operatorname{gcd}(a, m)=1$ if, and only if, $s a+t m=1$ for some $s, t \in \mathbb{Z}$. Similarly $\operatorname{gcd}(b, m)=1$ implies $k b+\ell m=1$ for some $k, \ell \in \mathbb{Z}$. Multiply the first equality by $k b$ to get

$$
s a k b+t m k b=k b=1-\ell m,
$$

using the second equality. Rearrange as

$$
(s k) a b+(t k b+\ell) m=1,
$$

i.e. some linear combination of $a b$ and m equals 1 . This is simply the definition that $\operatorname{gcd}(a b, m)=1$.

These lemmas can be combined to show that if $a_{i} \mid c$ for $1 \leq i \leq N$ and $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for all $i \neq j$ then $a_{1} a_{2} \ldots a_{N} \mid c$. Left to student.

Theorem 13 Chinese Remainder Theorem (for n linear congruences) Let $m_{1}, m_{2}, \ldots, m_{n}$ be integers such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$, and $a_{1}, a_{2}, \ldots, a_{n}$ integers. Then the simultaneous congruences

$$
\begin{aligned}
x \equiv & a_{1} \bmod m_{1}, \\
x \equiv & a_{2} \bmod m_{2}, \\
& \vdots \\
x \equiv & a_{n} \bmod m_{n}
\end{aligned}
$$

have exactly one solution with $0 \leq x \leq m_{1} m_{2} \ldots m_{n}-1$.
Proof not given in this appendix, but the idea is to find a solution of the form

$$
x^{*}=\ell_{1} a_{1}+\ell_{2} a_{2}+\ell_{3} a_{3}+\cdots+\ell_{n} a_{n} .
$$

To satisfy $x^{*} \equiv a_{i} \bmod m_{i}$ for each $1 \leq i \leq n$, it suffices that

$$
\ell_{i} \equiv 1 \bmod m_{i} \quad \text { and } \quad \ell_{i} \equiv 0 \bmod m_{j} \text { for all } j \neq i .
$$

Let $M=m_{1} m_{2} \ldots m_{n}$, the product of the moduli and, for each $1 \leq i \leq n$, define

$$
\kappa_{i}=\frac{M}{m_{i}}=\prod_{\substack{j=1 \\ j \neq i}}^{n} m_{j},
$$

the product of all moduli except for m_{i}. Then

$$
\ell_{i} \equiv 0 \bmod m_{j} \forall j \neq i \Rightarrow m_{j}\left|\ell_{i} \forall j \neq i \Rightarrow \prod_{\substack{j=1 \\ j \neq i}}^{n} m_{j}\right| \ell_{i},
$$

using the fact that the m_{i} are pairwise coprime. Thus $\kappa_{i} \mid \ell_{i}$ for all $1 \leq i \leq n$. Then we can write $\ell_{i}=\kappa_{i} b_{i}$ for some $b_{i} \in \mathbb{Z}$.

To satisfy the first condition $\ell_{i} \equiv 1 \bmod m_{i}$ we choose b_{i} to satisfy $\kappa_{i} b_{i} \equiv$ $1 \bmod m_{i}$, i.e. to be the inverse of k_{i} modulo m_{i}. (The fact that all the moduli are co-prime means that $\operatorname{gcd}\left(k_{i}, m_{i}\right)=1$ which ensures the inverses b_{i} exist). Let

$$
x^{*}=\kappa_{1} b_{1} a_{1}+\kappa_{2} b_{2} a_{2}+\kappa_{3} b_{3} a_{3}+\cdots+\kappa_{n} b_{n} a_{n} .
$$

Finally if y^{*} is the general solution then $y^{*}=x^{*}+M t$ for $t \in \mathbb{Z}$.

